Skip to contents

The function igc produces IGC values in a tibble object.

Usage

igc(data, LLTR = 80, ULTR = 140, a = 1.1, b = 2, c = 30, d = 30)

Arguments

data

DataFrame object with column names "id", "time", and "gl", or numeric vector of glucose values.

LLTR

Lower Limit of Target Range, default value is 80 mg/dL.

ULTR

Upper Limit of Target Range, default value is 140 mg/dL.

a

Exponent, generally in the range from 1.0 to 2.0, default value is 1.1.

b

Exponent, generally in the range from 1.0 to 2.0, default value is 2.

c

Scaling factor, to display Hyperglycemia Index, Hypoglycemia Index, and IGC on approximately the same numerical range as measurements of HBGI, LBGI and GRADE, default value is 30.

d

Scaling factor,to display Hyperglycemia Index, Hypoglycemia Index, and IGC on approximately the same numerical range as measurements of HBGI, LBGI and GRADE, default value is 30.

Value

A tibble object with two columns: subject id and corresponding IGC value.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the IGC values is returned.

IGC is calculated by taking the sum of the Hyperglycemia Index and the Hypoglycemia index. See hypo_index and hyper_index.

References

Rodbard (2009) Interpretation of continuous glucose monitoring data: glycemic variability and quality of glycemic control, Diabetes Technology and Therapeutics 11 .55-67, doi:10.1089/dia.2008.0132 .

Examples

data(example_data_1_subject)
igc(example_data_1_subject)
#> # A tibble: 1 × 2
#>   id          IGC
#>   <fct>     <dbl>
#> 1 Subject 1 0.401
igc(example_data_1_subject, ULTR = 160)
#> # A tibble: 1 × 2
#>   id          IGC
#>   <fct>     <dbl>
#> 1 Subject 1 0.203

data(example_data_5_subject)
igc(example_data_5_subject)
#> # A tibble: 5 × 2
#>   id          IGC
#>   <fct>     <dbl>
#> 1 Subject 1 0.401
#> 2 Subject 2 4.17 
#> 3 Subject 3 1.22 
#> 4 Subject 4 0.401
#> 5 Subject 5 2.22 
igc(example_data_5_subject, LLTR = 75, ULTR = 150)
#> # A tibble: 5 × 2
#>   id          IGC
#>   <fct>     <dbl>
#> 1 Subject 1 0.278
#> 2 Subject 2 3.64 
#> 3 Subject 3 0.965
#> 4 Subject 4 0.242
#> 5 Subject 5 1.86