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Prerequisites

If you would like to follow along, make sure you install R package
iglu. We would also use R package dplyr
# From CRAN
install.packages("iglu")
install.packages("dplyr")

# Plain installation from GitHub
devtools::install_github("irinagain/iglu")

# For installation with vignette
devtools::install_github("irinagain/iglu",

build_vignettes = TRUE)

Alternatively, you can follow via Shiny App here

https://irinagain.shinyapps.io/shiny_iglu/


Objectives

▶ Familiarity with CGM data and context of use
▶ Visualization with iglu
▶ Consensus metrics of glycemic control and their computation
▶ Additional CGM metrics
▶ Broader CGM research perspectives



Introduction to CGM data

| |

CGMs measure interstitial glucose levels continuously throughout
the day, typical frequency is 5 min

One CGM lasts 10 days (most Dexcom models) or 14 days (most
Libre models), after which it needs to be replaced



What does the normal insulin/glucose levels should look
like?

▶ Normal blood
glucose range -
70-120 mg/dL

▶ Spikes as a result of
the meal intake

▶ Main challenge:
non-linear trend,
highly dependent on
the environment
(time and content of
meals, exercise,
stress, etc)

▶ HbA1c: standard
biomarker of glucose
control, average
glucose levels for
preceeding 2-3
months

Credit: Wikipedia



Example CGM data from iglu
Dexcom G4 CGM measurements with 5 min frequency of a subject
with type 2 diabetes. Horizontal lines are 70-180 mg/dL (typical
target range).
library(iglu)
plot_glu(example_data_1_subject)
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CGM context of use
Diabetes management

▶ Subjects with Type 1 diabetes use real time data to inform insulin
usage

▶ Subjects with prediabetes, Type 2 and gestational diabetes use data
to inform dietary choices and physical activity (if not on insulin)

Clinical practice: Endocrinologists use data to inform treatment decisions
and make recommendations on insulin dosage adjustment

Clinical trials: CGM-based outcomes are used to evaluate treatment
efficacy

Research at large

▶ Predictions of future glucose based on past CGM data (artificial
pancreas)

▶ Retrospecticve associations between glycemic levels and
characteristics

▶ Nutritionists use CGM data to study the effects of different diets on
glycemic control



CGM-based metrics of glycemic control

Summarizes more than 40 different CGM-based glucose control and
variability metrics. Many more developed and proposed in the
literature since then.

Our R package iglu computes 60+ metrics corresponding to
different aspects of glycemic control. Recently used in CGMap
(Keshet et al., 2003) on over 7000 non-diabetic individuals to
generate reference values for CGM-derived measured.

https://doi.org/10.1016/j.cmet.2023.04.002


Metrics pros and cons
Pros:

▶ Capture different aspects of glycemic control

▶ Many software packages exist, and they generally agree with
each other - recent review by Piersanti et al., 2023

▶ Community activities to build consensus on what should be
used in clinical trials as endpoints

https://doi.org/10.1089/dia.2022.0237


Metrics pros and cons

Cons:

▶ Consensus is made primarily based on considerations for type 1
diabetes

▶ Metrics selection is based on interpretability

▶ Translation of more complex metrics into automatic algorithms
can lead to disagreement across software

For more discussion:

▶ Gaynanova I (2022). Digital biomarkers of glucose control -
reproducibility challenges and opportunities. ASA
Biopharmaceutical Report, Vol. 29, No. 1, 21-26.



Example datasets

The iglu package comes with two example datasets

▶ example_data_5_subject are 5 min frequency Dexcom G4
CGM data from 5 subjects with type 2 diabetes not on insulin
therapy. These data are part of a larger study analyzed in
Gaynanova et al. (2020)

▶ example_data_hall are Dexcom G4 5 min frequency CGM
data from 19 subjects with pre-diabetes and type 2 diabetes
from Hall et all. (2018)

Awesome-CGM by Xu et al. (2024) has additional public CGM
datasets assembled by our group

https://doi.org/10.1093/biostatistics/kxaa023
https://doi.org/10.1371/journal.pbio.2005143
https://doi.org/10.5281/zenodo.14541646


Additional resources on iglu

The website and paper references.

▶ Broll S, Urbanek J, Buchanan D, Chun E, Muschelli J, Punjabi
N and Gaynanova I (2021). Interpreting blood glucose data
with R package iglu. PLoS One, Vol. 16, No. 4, e0248560.

▶ Chun E, Fernandes JN and Gaynanova I (2024). An Update on
the iglu Software for Interpreting Continuous Glucose
Monitoring Data. Diabetes Technology and Therapeutics, Vol.
26, No. 12, 939-950.

The website has additional vignettes on MAGE, AGP and episode
calculations and lasagna plots.

https://irinagain.github.io/iglu/
https://doi.org/10.1371/journal.pone.0248560
https://doi.org/10.1371/journal.pone.0248560
https://doi.org/10.1089/dia.2024.0154
https://doi.org/10.1089/dia.2024.0154
https://doi.org/10.1089/dia.2024.0154
https://irinagain.github.io/iglu/articles/MAGE.html
https://irinagain.github.io/iglu/articles/AGP_and_Episodes.html
https://irinagain.github.io/iglu/articles/AGP_and_Episodes.html
https://irinagain.github.io/iglu/articles/lasagna_plots.html


How much data do you need?

▶ 2 weeks of data with at least 70% non-missing is typical standard for
outpatient CGM settings Battelino et al. (2023)

▶ Can check amoung of missingness in iglu with active_percent

active_percent(example_data_5_subject)

## # A tibble: 5 x 5
## id active_percent ndays start_date end_date
## <fct> <dbl> <drtn> <dttm> <dttm>
## 1 Subject 1 79.8 12.7 days 2015-06-06 16:50:27 2015-06-19 08:59:36
## 2 Subject 2 58.9 16.7 days 2015-02-24 17:31:29 2015-03-13 09:38:01
## 3 Subject 3 92.1 5.8 days 2015-03-10 15:36:26 2015-03-16 10:11:05
## 4 Subject 4 98.7 12.9 days 2015-03-13 12:44:09 2015-03-26 10:01:58
## 5 Subject 5 95.8 10.6 days 2015-02-28 17:40:06 2015-03-11 08:04:28

https://doi.org/10.1016/S2213-8587(22)00319-9


Same data visually

Consider 5 subjects with type 2 diabetes and their CGM data
plot_glu(example_data_5_subject)
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Other ways to visualize the data

Lasagna plots Swihart et al. (2010)
plot_lasagna_1subject(example_data_1_subject)
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Other ways to visualize the data

Lasagna plots sorted by time - average 24 hours effects
plot_lasagna_1subject(example_data_1_subject,

lasagnatype = 'timesorted')
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Common summaries of CGM data

Consensus CGM metrics described in Battelino et al. (2023)

▶ Mean glucose and GMI (Glucose Management Indicator)
▶ Time-in-Range (TIR, 70-180 mg/dL), Time in Hypoglycemia

(Level 1 and Level 2), Time in Hyperglycemia (Level 1 and
Level 2)

▶ CV (Coefficient of Variation)
▶ GRI (Glucose Risk Index)
▶ Glycemic Episodes

https://doi.org/10.1016/S2213-8587(22)00319-9


Mean and GMI

Check that our intuition is matched
mean_glu(example_data_5_subject)

## # A tibble: 5 x 2
## id mean
## <fct> <dbl>
## 1 Subject 1 124.
## 2 Subject 2 218.
## 3 Subject 3 154.
## 4 Subject 4 130.
## 5 Subject 5 175.



Mean and GMI
GMI is a deterministic transformation of mean on HbA1c scale

GMI = 3.31 + 0.02392 × mean glucose

gmi(example_data_5_subject)

## # A tibble: 5 x 2
## id GMI
## <fct> <dbl>
## 1 Subject 1 6.27
## 2 Subject 2 8.54
## 3 Subject 3 6.99
## 4 Subject 4 6.41
## 5 Subject 5 7.49

HbA1c is a measure of average glucose over the past 3 months

Pre-diabetes - A1c of 5.7%-6.4%; Diabetes - A1c> 6.5%

Typical treatment goal: A1c < 7%



Time in range (TIR)

Most common and accepted metric as treatment target
in_range_percent(example_data_5_subject,

target_ranges = list(c(70, 180)))

## # A tibble: 5 x 2
## id in_range_70_180
## <fct> <dbl>
## 1 Subject 1 91.7
## 2 Subject 2 26.4
## 3 Subject 3 81.3
## 4 Subject 4 95.1
## 5 Subject 5 62.1

A typical goal is over 70%. Subjects without diabetes typically have
over 95% TIR



Time in range (TIR)
Can also be judged from the plots
plot_glu(example_data_5_subject, LLTR = 70, ULTR = 180)
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A tight time in range corresponds to [70, 140], typically used in
pregnancy.



Time in range and outside

It is typical to divide the whole range of measurements into time
spent within prespecified thresholds

▶ Level 2 Hypoglycemia [< 54 mg/dL]
▶ Level 1 Hypoglycemia [54 - 70 mg/dL]
▶ In-range [70 - 180 mg/dL]
▶ Level 1 Hyperglycemia [180 - 250 mg/dL]
▶ Level 2 Hyperglycemia [> 250 mg/dL]

The sum across ranges is 100%, giving rise to barplot

Sometimes, Levels 1 and 2 are combined, giving rise to just 3 areas.



Glycemic thresholds

▶ Overall goal - spend as
much time In Range as
possible

▶ Recent analysis of over
7,000 subjects without
diabetes (Keshet et al.,
2023) finds that an average
is about 94%

▶ One example subject with
Type 2 diabetes from iglu
has 26% TIR - clearly room
for improvement



Time in range and outside
plot_glu(example_data_5_subject %>%

dplyr::filter(id == "Subject 5"))
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plot_ranges(example_data_5_subject %>%
dplyr::filter(id == "Subject 5"))
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For Subject 5, there is significant time in Hyperglycemia, and no
time in Hypoglycemia. In general, Hypoglycemia is more prominent
in subjects with Type 1 diabetes.



Time in range and outside
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The ranges can be evaluated separately with any thresholds
below_percent(example_data_5_subject %>%

dplyr::filter(id == "Subject 5"))

## # A tibble: 1 x 3
## id below_54 below_70
## <fct> <dbl> <dbl>
## 1 Subject 5 0 0.103
above_percent(example_data_5_subject %>%

dplyr::filter(id == "Subject 5"))

## # A tibble: 1 x 4
## id above_140 above_180 above_250
## <fct> <dbl> <dbl> <dbl>
## 1 Subject 5 69.8 37.8 11.3



Time in range and outside

▶ Fixed thresholds of 54, 70, 180, 250 mg/dL are common
▶ For data-driven unsupervised thresholds, see our recent work,

not on iglu yet but is in python
https://github.com/pjywang/OptiThresholds

Park et al. (2025) Beyond fixed thresholds: optimizing summaries of
wearable device data via piecewise linearization of quantile functions

https://github.com/pjywang/OptiThresholds
https://arxiv.org/abs/2501.11777
https://arxiv.org/abs/2501.11777


Coefficient of variation

CV is a global measure (100 × SD/mean). A typical treatment
target is below 36%.
cv_glu(example_data_5_subject)

## # A tibble: 5 x 2
## id CV
## <fct> <dbl>
## 1 Subject 1 26.9
## 2 Subject 2 24.0
## 3 Subject 3 29.1
## 4 Subject 4 22.4
## 5 Subject 5 33.5



AGP (Ambulatory Glucose Profile)
Most consensus metrics are typically summarized in AGP.
agp(example_data_1_subject, daily = FALSE)
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GRI (Glucose Risk Index)
More recent measure, based on PCA of clinicians’ ratings [Klonoff et
al. (2022). The final formula is based on percentages within each level -
attempt to arrive at 1 summary.

GRI = 3× Lv2 Hypo+2.4× Lv1 Hypo+0.8× Lv1 Hyper+1.6× Lv2 Hyper

gri(example_data_5_subject)

## # A tibble: 5 x 2
## id GRI
## <fct> <dbl>
## 1 Subject 1 7.19
## 2 Subject 2 79.7
## 3 Subject 3 20.0
## 4 Subject 4 4.38
## 5 Subject 5 39.5

GRI = 0 indicates time-in-range of 100%. Maximum allowable GRI is
100%.

https://doi.org/10.1177/19322968221085273
https://doi.org/10.1177/19322968221085273


Glycemic Episodes
▶ High Glucose (Level 1) -

> 180, ≥15 consecutive
min, ends when ≥ 15
consecutive min of values
< 180

▶ Very High Glucose (Level 2)
- > 250, ≥15 consecutive
min, ends when ≥ 15
consecutive min of values
< 250

▶ Dexcom G6, G7- 5
measurement frequency,
hence requires 3 consecutive
readings; Free Style Libre 3 -
1 min (but typically
agglomerated at 5 min)



Episodes
epicalc_profile(example_data_hall %>%

dplyr::filter(id == "2133-039"))
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Count interpretation

▶ iglu counts 3 Level 2 episodes (> 250)

▶ iglu counts only 1 Level 1 episode (adjusted definition > 180)

▶ iglu counts 0 Exclusive Level 1 episodes

▶ same logic is applied to hypoglycemic episodes



Episodes

Alternative numeric output directly
episode_calculation(example_data_hall %>%

dplyr::filter(id == "2133-039"))

## # A tibble: 7 x 7
## id type level avg_ep_per_day avg_ep_duration avg_ep_gl total_episodes
## <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 2133-039 hypo lv1 1.33 49 63.8 10
## 2 2133-039 hypo lv2 0.133 15 51.4 1
## 3 2133-039 hypo extend~ 0 0 NA 0
## 4 2133-039 hyper lv1 0.266 42.5 188. 2
## 5 2133-039 hyper lv2 0 0 NA 0
## 6 2133-039 hypo lv1_ex~ 1.20 45 64.2 9
## 7 2133-039 hyper lv1_ex~ 0.266 42.5 188. 2

For more algorithmic discussion on episode calcultaion challenges,
including missing data:

▶ Gaynanova and Lee (2025) When Algorithms Diverge: Quantification
of Glycemic Episodes from Continuous Glucose Monitor Data
Diabetes Technology & Theurapetics, ahead of print.

https://doi.org/10.1089/dia.2024.0618
https://doi.org/10.1089/dia.2024.0618


All consensus metrics at once

all_metrics(example_data_5_subject,
metrics_to_include = "consensus_only")

## # A tibble: 5 x 18
## id below_54 below_70 in_range_70_180 above_180 above_250 SD mean CV
## <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Subje~ 0 0.137 91.7 8.20 0.377 33.3 124. 26.9
## 2 Subje~ 0 0 26.4 73.6 26.1 52.4 218. 24.0
## 3 Subje~ 0 0.326 81.3 18.3 5.68 44.8 154. 29.1
## 4 Subje~ 0.0546 0.273 95.1 4.61 0 29.1 130. 22.4
## 5 Subje~ 0 0.103 62.1 37.8 11.3 58.6 175. 33.5
## # i 9 more variables: active_percent <dbl>, ndays <drtn>, start_date <dttm>,
## # end_date <dttm>, in_range_70_140 <dbl>, GMI <dbl>, GRI <dbl>,
## # total_extended_hypo_episodes <dbl>, total_extended_hyper_episodes <dbl>

This includes missing via active_percent, mean, GMI, TIR measures,
SD, CV, GRI, GRI and counts of extended hypo- and hyperglycemia
episodes



Common summaries of CGM data

Consensus CGM metrics described in Battelino et al. (2023)

▶ Mean glucose and GMI (Glucose Management Indicator)
▶ Time-in-Range (TIR, 70-180 mg/dL), Time in Hypoglycemia

(Level 1 and Level 2), Time in Hyperglycemia (Level 1 and
Level 2)

▶ CV (Coefficient of Variation)
▶ GRI (Glucose Risk Index)
▶ Glycemic Episodes

TIR is the 1st default and most common standard.

https://doi.org/10.1016/S2213-8587(22)00319-9


More metrics
cluster_out = metrics_heatmap(data = example_data_hall)
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More metrics - variability measures

▶ sd_measures - different types of standard deviation, betwen
days, within time points, highly correlated

sd_measures(example_data_5_subject)

## # A tibble: 5 x 7
## id SDw SDhhmm SDwsh SDdm SDb SDbdm
## <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Subject 1 26.4 19.6 6.54 16.7 27.9 24.0
## 2 Subject 2 36.7 22.8 7.62 52.0 48.0 35.9
## 3 Subject 3 42.9 14.4 9.51 12.4 42.8 42.5
## 4 Subject 4 24.5 12.9 6.72 16.9 25.5 22.0
## 5 Subject 5 50.0 29.6 12.8 23.3 50.3 45.9



More metrics - variability measures
▶ mage - Mean Amplitude of Glycemic Excursions

Automatic peak identification algorithm, exclusion of smallest amplitudes,
average amplitude returned
mage(example_data_5_subject %>%

dplyr::filter(id == "Subject 3"), plot = TRUE)
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More metrics - variability measures
▶ mage - Mean Amplitude of Glycemic Excursions

Automatic peak identification algorithm, exlusion of smallest
amplitudes, average amplitude returned
mage(example_data_5_subject)

## Gap found in data for subject id: Subject 2, that exceeds 12 hours.

## # A tibble: 5 x 2
## # Rowwise:
## id MAGE
## <fct> <dbl>
## 1 Subject 1 72.4
## 2 Subject 2 118.
## 3 Subject 3 116.
## 4 Subject 4 70.9
## 5 Subject 5 142.



More metrics - variability measures

▶ mage - Mean Amplitude of Glycemic Excursions

Automatic peak identification algorithm, exlusion of smallest
amplitudes, average amplitude returned
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More metrics - variability measures
▶ sd_roc - standard deviation of rate of change (local variability)

Rate of Change, for CGM ∆t = 15 min

ROC(t) = G(t + ∆t) − G(∆t)
∆t

hist_roc(example_data_1_subject)
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More metrics - variability measures

▶ sd_roc - standard deviation of rate of change (local variability)
sd_roc(example_data_5_subject)

## # A tibble: 5 x 2
## id sd_roc
## <fct> <dbl>
## 1 Subject 1 0.620
## 2 Subject 2 0.642
## 3 Subject 3 0.831
## 4 Subject 4 0.617
## 5 Subject 5 1.05



More metrics - iglu reference

▶ Website documentation reference for more metrics

▶ Heatmap implementation in iglu gives an idea on which
metrics may provide complementary information on your data

https://irinagain.github.io/iglu/reference/index.html


Note on accuracy and processing

▶ all CGMs have measurement error
▶ CGM data from curated studies is usually used “as-is”
▶ CGM data from research data warehouses (RDW) may require

additional processing due to multiple-device uploads (e.g., CGM
and insulin pump), device switches, time zone changes, etc.

Williamson et al. (2025) A Processing Algorithm to Address
Real-World Data Quality Issues With Continuous Glucose
Monitoring Data, Journal of Diabetes Science and Technology,
ahead of print.

https://doi.org/10.1177/19322968251319801
https://doi.org/10.1177/19322968251319801
https://doi.org/10.1177/19322968251319801


Conclusions and opportunities

A personal take

▶ Integration

▶ Reproducibility and validation

▶ Involvement

▶ Novel methods

▶ Application and science-driven



Conclusions and opportunities

Integration of CGM data with other measurements

▶ Physical activity and sleep data from actigraphy

▶ For patients with type 1 diabetes, insulin administration from
the pump - actively used in AI/ML for artificial pancreas

▶ Meal times (realistic) and meal composition (less so)



Conclusions and opportunities

Reproducibility and validation of consensus and other glycemic
metrics

▶ Long-term prospective outcome studies

▶ Transfer and adjustment for patients outside of type 1 diabetes

▶ Deviations with respect to normative ranges (CGMap) rather
than absolute

▶ Disentanglement of independent aspects of glycemic control



Conclusions and opportunities

Involvement of multiple stake-holders together

▶ Clinicians

▶ Regulatory agencies

▶ Statisticians

▶ Software developers

▶ Device manufacturers

▶ Patients



Conclusions and opportunities

Novel methods development to fully exploit CGM data complexity

▶ FDA with registration, multi-level structure, unequal
trajectories length

▶ Distributional approaches on multiple-responses with local
temporal information



Conclusions and opportunities

Application and science-driven development

▶ No new metrics for new metrics sake

▶ Methods informed by data problems



Conclusions and opportunities

A personal take

▶ Integration

▶ Reproducibility and validation

▶ Involvement

▶ Novel methods

▶ Application and science-driven

Thank you!

Irina Gaynanova, irinagn@umich.edu


